Applied Mathematics Course Descriptions - Applied Mathematics
Information for Calculus classes:
All courses will use the Eighth Edition of Stewart’s Calculus textbook as the official textbook for the class.
Rules regarding exams and quizzes:
• Calculators are NOT allowed.
• Books, crib sheets, or notes are NOT allowed.
• No untimed tests (e.g., take home exams).
• Students may NOT use test banks or old exams/quizzes from any NPS instructor as study aids nor may they allow any returned exam to be put into a test bank or transmitted to another student.
There is a Math Acceleration Lab to support students in all the math courses, please find information here.

MA1025: Introduction to Mathematical Reasoning
Offered AS Required
An introductory course in logic and elementary discrete mathematics to be taken by students in the Operations Research curriculum. Considerable emphasis is placed on propositional and predicate logic, and on techniques of proof in mathematics. Mathematical topics include sets, functions, and relations. Coverage of combinatorics includes an introduction to permutations, combinations, the pigeon-hole principle, and the principle of inclusion/exclusion. No previous experience with this material is assumed. Prerequisite: None.
Texts
Discrete Mathematics: An Introduction to Mathematical Reasoning (Brief ed.) by Susanna S. Epp; ISBN: 978-0-495-82617-0

MA1113: Single Variable Calculus I
Offered EVERY QUARTER
Review of analytic geometry and trigonometry, functions of one variable, limits, derivatives, continuity and differentiability; differentiation of algebraic, trigonometric, logarithmic and exponential functions with applications to maxima and minima, rates, differentials; product rule, quotient rule, chain rule; antiderivatives, integrals and the fundamental theorem of calculus; definite integrals, areas. Taught at the rate of nine hours per week for five weeks. Prerequisite: Pre-Calculus mathematics.
Texts
Calculus: Early Transcendentals, 8th Edition by James Stewart (2015). ISBN-10: 1285741552 ISBN-13: 9781285741550.

MA1114: Single Variable Calculus II with Matrix Algebra
Offered EVERY QUARTER
Topics in calculus include applications of integration, special techniques of integration, infinite series, convergence tests, and Taylor series. Matrix algebra topics covered are: the fundamental algebra of matrices including addition, multiplication of matrices, multiplication of a matrix by a constant and a column (vector) by a matrix; elementary matrices and inverses, together with the properties of these operations; solutions to mxn systems of linear algebraic equations using Gaussian elimination and the LU decomposition (without pivoting); determinants, properties of determinants; and a brief introduction to the arithmetic of complex numbers and DeMoivre's theorem. Taught at the rate of nine hours per week for five weeks. Prerequisite: MA1113.
Texts
- Calculus (Early Transcendentals), 6th Edition, James Stewart (Brooks Cole 2008, ISBN 0-495-01166-5)
- Linear Algebra with Applications, 7th edition, Steven J. Leon, (Prentice Hall 2006, ISBN 0-13-185785-1)


MA1115: Multi Variable Calculus
Offered EVERY QUARTER
Vector algebra and calculus, directional derivative, gradient, polar coordinates and parametric equations, functions of several independent variables, limits, continuity, partial derivatives, chain rule, maxima and minima, double and triple integrals, cylindrical and spherical coordinate systems. Taught at the rate of nine hours per week for five weeks. Prerequisite: MA1114.
Texts
Calculus: Early Transcendentals, 8th Edition by James Stewart (2015). ISBN-10: 1285741552 ISBN-13: 9781285741550.

MA1116: Vector Calculus
Offered EVERY QUARTER
The calculus of vector fields; directional derivative, gradient, divergence, curl; potential fields; Green's, Stokes', and the divergence integral theorems. Applications in engineering and physics. Taught at the rate of seven hours per week for five weeks. Prerequisite: MA1115.
Texts
Calculus: Early Transcendentals, 8th Edition by James Stewart (2015). ISBN-10: 1285741552 ISBN-13: 9781285741550.

MA2025: Logic and Discrete Mathematics I
Offered SUMMER & winter QUARTERS
MA2025 is a first course in discrete mathematics for students of mathematics and computer science. Topics include propositional and predicate logic up to the deduction theorem, methods of mathematical proof, naive set theory, properties of functions, sequences and sums, mathematical induction, an introduction to divisibility and congruences, and an introduction to enumerative combinatorics. Prerequisites: None, although a review of algebra skills is recommended.
Texts
Discrete Mathematics and Its Applications, 7th Edition, K.H. Rosen, WCB/McGraw-Hill 2012.

MA2043: Intro to Matrix & Linear Algebra
Offered AS REQUIRED
The fundamental algebra of vectors and matrices including addition, scaling, and multiplication. Block operations with vectors and matrices. Algorithms for computing the LU (Gauss) factorization of an MxN matrix, with pivoting. Matrix representation of systems of linear equations and their solution via the LU factorization. Basic properties of determinants. Matrix inverses. Linear transformations and change of basis. The four fundamental subspaces and the fundamental theorem of linear algebra. Introduction to eigenvalues and eigenvectors. Prerequisites: Students should have mathematical background at the level generally expected of someone with a B.S. in Engineering, i.e., familiarity with Calculus and solid algebra skills. EC1010 (May be taken concurrently.)
Texts
Introduction to Linear Algebra. 5th ed, Strang, Gilbert. Wellesley-Cambridge Press, 2016. ISBN: 9780980232776.

MA2121: Differential Equations
Offered EVERY QUARTER
Ordinary differential equations: linear and nonlinear (first order) equations, homogeneous and non-homogeneous equations, linear independence of solutions, power series solutions, systems of differential equations, Laplace transforms. Applications include radioactive decay, elementary mechanics, mechanical and electrical oscillators, forced oscillations and resonance. Prerequisite: MA1114.
Texts
Elementary Differential Equations and Boundary Value Problems, 8th edition, Boyce & DiPrima, (John Wiley, ISBN 0-471-43338-1)

MA3025: Logic and Discrete Mathematics II
Offered AS REQUIRED
Provides a rigorous foundation in logic and elementary discrete mathematics to students of mathematics and computer science. Topics from logic include modeling English propositions, propositional calculus, quantification, and elementary predicate calculus. Additional mathematical topics include elements of set theory, mathematical induction, relations and functions, and elements of number theory. Prerequisites: MA2025 (preferable) or MA1025.
Texts
Discrete Mathematics and Its Applications, 7th Edition, K.H. Rosen, WCB/McGraw-Hill 2012.

MA3046: Matrix Analysis
Offered AS REQUIRED
This course provides students in the engineering and physical sciences curricula with an applications-oriented coverage of major topics of matrix and linear algebra. Matrix factorizations (LU, QR, Cholesky), the Singular Value Decomposition, eigenvalues and eigenvectors, the Schur form, subspace computations, structured matrices. Understanding of practical computational issues such as stability, conditioning, complexity, and the development of practical algorithms. Prerequisites: MA2043 and EC1010.
Texts
See Syllabus

MA3132: Partial Differential Equations and Integral Transforms
Offered EVERY QUARTER
Solution of boundary value problems by separation of variables; Sturm-Liouville problems; Fourier and Bessel series solutions, Fourier transforms; classification of second-order equations; applications, method of characteristics. Applications to engineering and physical science. Satisfies the ESR in differential equations for the Applied Mathematics program. Prerequisites: MA2121 and MA1116.
Texts
See Syllabus

MA3232: Numerical Analysis
Offered EVERY QUARTER
Provides the basic numerical tools for understanding more advanced numerical methods. Topics for the course include: Sources and Analysis of Computational Error, Solution of Nonlinear Equations, Interpolation and Other Techniques for Approximating Functions, Numerical Integration and Differentiation, Numerical Solution of Initial and Boundary Value Problems in Ordinary Differential Equations, and Influences of Hardware and Software. Prerequisites: MA1115, MA2121 and ability to program in MATLAB and MAPLE.
Texts
See Syllabus

MA4026: Combinatorial Mathematics
Offered AS REQUIRED
Advanced techniques in enumerative combinatorics and an introduction to combinatorial structures. Topics include generating functions, recurrence relations, elements of Ramsey theory, theorems of Burnside and Polya, and balanced incomplete block designs. Application areas with DoD/DoN relevance range from mathematics to computer science and operations research, including applications in probability, game theory, network design, coding theory, and experimental design. Prerequisite: MA3025.
Texts
See Syllabus

MA4027: Graph Theory and Applications
Offered FALL QUARTERS
Advanced topics in the theory of graphs and digraphs. Topics include graph coloring, Eulerian and Hamiltonian graphs, perfect graphs, matching and covering, tournaments, and networks. Application areas with DoD/DoN relevance range from mathematics to computer science and operations research, including applications to coding theory, searching and sorting, resource allocation, and network design. Prerequisite: MA3025.
Texts
A First Course in Graph Theory by G. Chartrand and P. Zhang. ISBN-13: 978-0-486-48368-9

MA4245: Mathematics Foundation of Galerkin Methods
Offered AS REQUIRED
Variational formulation of boundary value problems, finite element and boundary element approximations, types of elements, stability, eigenvalue problems. Prerequisites: MA3132, MA3232 or equivalent.
Texts
See Syllabus

MA4248: Computational Linear Algebra
Offered AS REQUIRED
Development of algorithms for matrix computations. Rounding errors and introduction to stability analysis. Stable algorithms for solving systems of linear equations, linear least squares problems and eigen problems. Iterative methods for linear systems. Structured problems from applications in various disciplines. Prerequisites: MA3046, or consent of instructor, advanced MATLAB programming.
Texts
See Syllabus

MA4261: Distributed Scientific Computing
Offered AS REQUIRED
This course is an introduction to parallel computing from the viewpoint of scientific computing. This includes discussions of parallel algorithms and their implementation. We will explore:
- performance of programs,
- GPUs with CUDA,
- distributed memory programming with MPI,
- tools and debuggers, and
- examples drawn from scientific computing
Texts
See Syllabus

MA4311: Calculus of Variations
Offered AS REQUIRED
Euler equation, Weierstrass condition, Legendre condition, numerical procedures for determining solutions, gradient method, Newton method, Transversability condition, Rayleigh Ritz method, conjugate points. Concepts are related to geometric principles whenever possible. Prerequisites: MA2121 (programming experience desirable).
Texts
See Syllabus

MA4332: Principles and Techniques of Applied Mathematics
Offered FALL QUARTERS
Selected topics from applied mathematics to include: Dimensional Analysis, Scaling, Stability and Bifurcation, Perturbation Methods— regular and singular with boundary layer analysis, as well as, asymptotic expansions of integral, integrals equations, Green's functions of boundary value problems, and distribution theory. Prerequisites: MA3042 and MA3132; MA3232 strongly recommended.
Texts
See Syllabus

MA4404: Structure and Analysis of Complex Networks
Offered WINTER QUARTERS
The course focuses on the emerging science of complex networks and their applications, through an introduction to techniques and models for understanding and predicting their behavior. The topics discussed will be building mainly on graph theory concepts, and they will address the mathematics of networks, their applications to the computer networks and social networks, and their use in research. The students will learn the fundamentals of dynamically evolving complex networks, study current research in the field, and apply their knowledge in the analysis of real network systems through a final project. DoD applications include security of critical communication infrastructure. Prerequisites: MA3025 or MA4027.
Texts
See Syllabus

MA4550: Combinatorial and Cryptographic Properties of Boolean Functions
Offered AS REQUIRED
he course will discuss the Fourier analysis of Boolean functions and the relevant combinatorics with an eye toward cryptography and coding theory. Particular topics will include avalanche features of Boolean functions, correlation immunity and resiliency, bentness, trade-offs among cryptographic criteria and real-life applications in the designs of stream and block ciphers. Prerequisite: MA3025 or a similar combinatorial/discrete mathematics course (and recommended, but not required, an introductory course in probability).
Texts
See Syllabus

MA4560: Coding and Information Theory
Offered FALL QUARTERS
Mathematical analysis of the codes used over communication channels is made. Techniques developed for efficient, reliable and secure communication are stressed. Effects of noise on information transmission are analyzed and techniques to combat their effects are developed. Linear codes, finite fields, single and multiple error-correcting codes are discussed. Codes have numerous applications for communication in the military, and these will be addressed. Prerequisite: MA3560.
Texts
See Syllabus

MA4570: Cryptography - Foundations and Practice
Offered SUMMER QUARTERS
The methods of secret communication are addressed. Simple cryptosystems are described and classical techniques of substitution and transposition are considered. The public-key cryptosystems, RSA, Discrete Logarithm and other schemes are introduced. Applications of cryptography and cryptanalysis. Prerequisite: MA3560.
Texts
See Syllabus

MO1180: Topics in Mathematics for Systems Analysis
Offered SPRING & FALL Quarters
A one quarter course in logic, elementary mathematics, combinatorics, and matrix algebra, plus a review of selected topics from single variable calculus with extensions to two variables. This course is intended for first-quarter students in the distributed learning Master of Systems Analysis curriculum. Logic places emphasis on the Propositional and Predicate Calculus. Elementary mathematical topics include sets, functions, and relations. Coverage of combinatorics includes an introduction to basic principles of counting (sum and product rules), permutations, and combinations. The fundamental algebra of matrices includes addition, multiplication of matrices, and multiplication of a matrix by a constant, and a column (vector) by a matrix; elementary matrices and inverses, together with the properties of these operations; solutions to m x n systems of linear algebraic equations using Gaussian elimination. Selected topics from single-variable calculus are extended to functions of two-variables, including double integrals over rectangles and general regions. (This course may not be taken for credit by students in an engineering or science degree program, nor may it be used as a prerequisite for any other mathematics course). Prerequisite: Single-variable calculus.
Texts
See Syllabus

MO2180: Topics in Mathematics for Systems Analysis
Texts
See Syllabus
